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K 0 − K 0 Mixing and ∆mK

K 0(S = −1) and K
0
(S = +1) mix through second order weak

interactions:

i
d

dt
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)
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)
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Long-lived (KL) and short-lived (KS) are the two
eigenstates:

KS ≈
K 0 − K

0

√
2

, KL ≈
K 0 + K

0

√
2

. (2)

∆mK ≡ mKL
−mKS

= 2ReM00

Figure: figure from wikipedia
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Physics Motivation

∆mK ≡ mKL
−mKS

= 2ReM00

This quantity is:
1 Tiny, sensitive to new physics: FCNC via 2nd order weak interaction,

precisely measured

∆mK ,exp = 3.483(6)× 10−12 MeV

2 Significant contribution from scale of mc(GIM mechanism)
3 Appears difficult to compute from QCD perturbation theory:

strong coupling at mc scale; significant contributions from NNLO
J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

Lattice QCD:

from first principles
non-perturbative
systematic errors(FV, finite a, etc) could be controlled
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From Correlators to ∆mlat
K

∆mK is given by:

(3)

∆mK ≡ mKL
−mKS

= 2P
∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉
mK − En

What we measure on lattice are:

(4)G (t1, t2, ti , tf )≡〈0|T{K̄ 0(tf )HW (t2)HW (t1)K 0(ti )}|0〉

→ G (δ) = N2
Ke
−mK (tf−ti )

∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉e(mK−En)δ
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Extract ∆mK from Double-integrated Correlators

The double-integrated correlator is defined as:

(5)A≡ 1

2!

tb∑
t2=ta

tb∑
t1=ta

〈0|T{K̄ 0(tf )HW (t2)HW (t1)K 0(ti )}|0〉

If we insert a complete set of intermediate states, we find:

A=N2
Ke
−mK (tf−ti )

∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉
mK − En

{−T +
e(mK−En)T − 1

mK − En
}

(6)

with T ≡ tb − ta + 1.
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Extract ∆mK from Single-integrated Correlators

The single-integrated correlator is defined as:

(7)As(t,T )≡ 1

2!

t+T∑
t1=t−T

〈0|T{K̄ 0(tf )HW (t1)HW (t)K 0(ti )}|0〉

If we insert a complete set of intermediate states, we find:

As =N2
Ke
−mK (tf−ti )

∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉
mK − En

(−1+e(mK−En)(T+1))

(8)
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Subtraction of the light states

Either Double- or Single-integrated Method requires subtraction of
the terms from light states:

A=N2
Ke
−mK (tf−ti )

∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉
mK − En

{−T +
e(mK−En)T − 1

mK − En
}

(9)

As =N2
Ke
−mK (tf−ti )

∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉
mK − En

{−1+e(mK−En)(T+1)}

(10)

For |n〉(in our case |0〉, |ππ〉, |η〉, |π〉) with En < mK or En ∼ mK :
the exponential terms will be significant. We can:

freedom of adding cs s̄d , cp s̄γ
5d operators to the weak Hamiltonian

Here we choose:

〈0|HW − cp s̄γ5d |K 0〉 = 0, 〈η|HW − cs s̄d |K̄ 0〉 = 0

subtract contributions from other states(|π〉, |ππ〉) explicitly
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Operators of ∆mlat
K calculation

The ∆S = 1 effective Weak Hamiltonian:

(11)HW =
GF√

2

∑
q,q′=u,c

VqdV
∗
q′s(C1Q

qq′

1 + C2Q
qq′

2 )

where the Qqq′

i i=1,2 are current-current opeartors, defined as:

Qqq′

1 = (s̄iγ
µ(1− γ5)di )(q̄jγ

µ(1− γ5)q′j)

Qqq′

2 = (s̄iγ
µ(1− γ5)dj)(q̄jγ

µ(1− γ5)q′i )

There are four states need to subtracted: |0〉, |ππ〉, |η〉, |π〉. We add
cs s̄d , cp s̄γ

5d operators to weak operators to make:

〈0|Qi − cpi s̄γ5d |K 0〉 = 0, 〈η|Qi − csi s̄d |K 0〉 = 0 (12)

Q ′i = Qi − cpi s̄γ5d − csi s̄d (13)
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Diagrams in the Calculation of ∆mlat
K

For contractions among Qi , there are four types of diagrams to be
evaluated.

In addition, there are ”mixed” diagrams from the contractions
between the cs s̄d cp s̄γ

5d operators and Qi operators.
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Finite lattice spacing effects

Short distance correction?

Figure: Different cases about physics on lattice with respect to energy scales. The
shaded area represents where the contributions are important.
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Finite lattice spacing effects

Quadratic divergences as the two
HW approach each other:
cutoff effect ∝ (1/a)2

needs short-distance correction.

GIM mechanism + LL structure
removes both quadratic and
logarithmic divergences:
∼ (mca)2

Bigeng Wang (Columbia University) KL − KS mass difference Lattice X Workshop 2019 11 / 30



Finite lattice spacing effects

Ultraviolet divergences as the two HW approach each other:∼ (1/a)2

GIM mechanism → up minus charm quark propagators(for valence
charm we used amc ' 0.31)
163 × 32 lattice: Q1Q1 correlator amplitude reduction by a factor of
10 after introducing valence charm with mass 863 MeV (Jianglei Yu’s
PhD thesis, 2014).

(a) Without charm: ∼ 1 (b) With charm: ∼ 0.1
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Finite lattice spacing effects

Thus in our calculation of ∆mK ,
GIM mechanism + LL structure
removes both quadratic and
logarithmic divergences:

short distance contribution
greatly suppressed.

Major contribution to ∆mK

from scale ∼ mc
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Operator Renormalizations

Renormalization of Lattice operator Q1,2 in 3 steps:

C lat
i = CMS

a (1 + ∆r)RI→MS
ab Z lat→RI

bi

Non-perturbative Renormalization: from lattice to RI-SMOM

Z lat→RI =

[
0.6266 −0.0437
−0.0437 0.6266

]
(14)

Perturbation theory: from RI-SMOM to MS
C. Lehner, C. Sturm, Phys. Rev. D 84(2011), 014001

∆rRI→MS = 10−3 ×
[
−2.28 6.85
6.85 −2.28

]
(15)

Use Wilson coefficients in the MS scheme
G. Buchalla, A.J. Buras and M.E. Lautenbacher, arXiv:hep-ph/9512380

CMS = 10−3 ×
[
−0.260 1.118

]
(16)
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Status of RBC-UKQCD Calculations of ∆mk

”Long-distance contribution of the KL − KS mass difference”,
N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a 163 × 32 lattice
with unphysical masses(mπ = 421MeV ) including only connected diagrams

”KL − KS mass difference from Lattice QCD”
Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a 243 × 64 lattice with unphysical masses

”The KL − KS Mass Difference”
Z. Bai, N. H. Christ and C. T. Sachrajda, EPJ Web Conf. 175 (2018) 13017

All diagrams included on a 643 × 128 lattice with physical mass on 59
configurations: ∆mk = (5.5± 1.7stat)× 10−12MeV

Here I present an update of the analysis methods used and results
having smaller statistical errors with 152 configurations.
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Details of the Calculation

643 × 128× 12 lattice with Möbius DWF and the Iwasaki gauge
action with physical pion mass (136 MeV) and a−1 = 2.36GeV

Nf β aml amh α = b + c Ls
2+1 2.25 0.0006203 0.02539 2.0 12

Data:

Sample AMA Correction and Super-jackknife Method

data type CG stop residual
sloppy 1e − 4
exact 1e − 8

Data Set # of Sloppy # of Correction # of Type 1&2
Total 116 36 36

Disconnected Type4 diagrams:
save left- and right-pieces separately and use multiple source-sink
separation for fitting.
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Update of the results
2-point and 3-point results preliminary

Meson masses are consistent with physical values

mπ mK mη mππ,I=0

0.0574(1) 0.2104(1) 0.258(16) 0.1138(5)

135.5(2) 496.5(2) 609.9(37.8) 268.5(1.3)

c ′ss and c ′ps will be multilpied by the ”mixing” diagrams and the
errors from c ′ss and c ′ps will be carried all along.

cs1,η cs2,η cp1,vac cp2,vac

2.13(33) ×10−4 -3.16(25)×10−4 1.472(2) ×10−4 2.807(2) ×10−4

〈ππI=0|Q ′1|K 0〉 〈ππI=0|Q ′2|K 0〉 〈π|Q ′1|K 0〉 〈π|Q ′2|K 0〉
-8.7(1.5)×10−5 9.5(1.5) ×10−5 7.7(2.5)×10−4 -4.1(1.6)×10−4
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Double-integrated correlators preliminary

Fitting range: 10:20

All diagrams,
uncorrelated fit

∆mK =
8.1(1.2)× 10−12MeV

A = N2
Ke
−mK (tf−ti )

∑
n

〈K 0|HW |n〉〈n|HW |K̄ 0〉
mK − En

{−T +
e(mK−En)T − 1

mK − En
}

(17)
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Single-integrated correlators preliminary

(18)G (δ) = N2
Ke
−mK (tf−ti )

∑
n

〈K̄ 0|HW |n〉〈n|HW |K 0〉e(mK−En)δ

Check: Unintegrated → 〈0|Q ′i |K 0〉 = 0 , 〈η|Q ′i |K 0〉 = 0 → Subtract
〈π|Q ′i |K 0〉

Q ′i = Qi − cpi s̄γ5d − csi s̄d

Next step: integrate and obtain ∆mK

Note: Need to add back contributions to ∆mK from subtracted states.
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Single-integrated correlators: All diagrams, uncorrelated,
preliminary

(a) unintegrated results with π
subtraction

(b) After integrating to large T ,
converged

Choosing T=10, as the integration upper limit:

∆mK = 6.9(0.6)× 10−12MeV
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Sources of Error

Statistical Error

Less statistics for large operator separation

Systematic errors:

Finite-volume corrections: small compared to statistical errors
”Effects of finite volume on the KL − KS mass difference”

N.H. Christ, X. Feng, G. Martinelli and C.T. Sachrajda, arXiv:1504.01170

∆mK (FV ) = −0.22(7)× 10−12MeV (19)

Discretization effects are the largest sources of systematic error

O(a): No contributions from DWF;
Insure that no O(a) error is introduced by lattice summation.(please see
next slide)
O(a2): No short distance correction needed due to GIM cancellation
Instead, ∼ (mca)2
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Systematic errors

Discretization effects are the largest source of systematic error:

O(a): No corrections needed: integrand’s boundary values goes to zero

O(a2):

Heavy charm quark, ∼ (mca)2 gives 25% Extrapolation needed.
Another estimate based on HVP calculation is ∼ 15%
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Results preliminary

Using single-integration method, we could:
1 Manually avoid including noise around zero for large enough

operator separations
2 Smaller error in subtraction:

e−(En−mK )t rather than 1
En−mK

e−(En−mK )t

∆mK values obtained from 2 analysis methods

Method Double-int Single-int

∆mK/10−12 MeV 8.1(1.2)stat 6.9(0.6)stat

consistent within uncertainties
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Conclusion and Outlook

Our preliminary result based on 152 configurations is

∆mK = 6.7(0.6)stat(1.7)sys × 10−12MeV

to be compared to the experimental value

(∆mK )exp = 3.483(6)× 10−12MeV

Outlook

Better estimate of the discretization error:
Continue the calculation of ∆mK on Summit:

On finer lattice(963 × 192, a−1 = 2.8 GeV) → smaller mca.

Continue the check of the measurement on lattice and data
analysis(coefficients and renormalization factors), though the code was
checked by Jianglei, Ziyuan and myself before.
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Thanks for your attention!
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Finite lattice spacing error effects

Ultraviolet divergences as the two HW approach each other:

∫ a−1

mu

d4pγµ(1− γ5)
p −mu

p2 + m2
u

γν(1− γ5)
p −mu

p2 + m2
u

∝ (1/a)2 (20)

GIM mechanism removes both quadratic and logarithmic divergences
→ charm quark propagators(for valence charm we used amc ' 0.31)∫

d4pγµ(1− γ5)(
p −mu

p2 + m2
u

− p −mc

p2 + m2
c

)γν(1− γ5)(...− ...) (21)

∫
d4pγµ(1− γ5)(

p(m2
c −m2

u)

(p2 + m2
u)(p2 + m2

c)
)γν(1− γ5)(...− ...) (22)

And ”short distance” now comming from ∼ 1/mc , with ∼ (mca)2

finite lattice spacing error relevant, rather than ∼ (a−1)2 divergence.
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Finite lattice spacing effects

Ultraviolet divergences as the two HW approach each other:∼ (1/a)2

GIM mechanism → charm minus up quark propagators(for valence
charm we used amc ' 0.31)
removes both quadratic and logarithmic divergences:∼ m2

c

(a) Unintegrated correlators (b) mc dependence

Figure: GIM effect in the QCD-free case on lattice quadratic mc dependence.
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Finite lattice spacing effects

GIM mechanism → 64I lattice charm quark propagators(for valence
charm we used amc ' 0.31)
Similar behavior

(a) Without QCD (b) With Iwasaki gauge action

Figure: GIM effect on 643 × 128 lattice.
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